Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 38

Answer

See below

Work Step by Step

We are given that $y''+3y'+2y=10u_{\frac{\pi}{4}}(t)\sin (t-\frac{\pi}{4})$ and $y(0)=1\\ y'(0)=0$ We take the Laplace transform of both sides of the differential equation to obtain: $[s^2Y(s)-sY(0)-Y'(0)]+3[sY(s)-y(0)]+2Y(s)=\frac{10e^{-\frac{\pi}{4}s}}{s^2+1}$ Substituting in the given initial values and rearranging terms yields $Y(s)(s^2+3s+2)-s-3=\frac{10e^{-\frac{\pi}{4}s}}{s^2+1}\\ Y(s)(s^2+3s+2)=\frac{10e^{-\frac{\pi}{4}s}}{s^2+1}+s+3$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{10e^{-\frac{\pi}{4}s}}{(s^2+1)(s+2)(s+1)}+\frac{s}{(s+1)(s+2)}+\frac{3}{(s+1)(s+2)}\\ =e^{-\frac{\pi}{4}s}(-\frac{2}{s+2}+\frac{5}{s+1}-\frac{3s}{s^2+1}+\frac{1}{s^2+1})+3(\frac{1}{s+1}-\frac{1}{s+2})+\frac{2}{s+2}-\frac{1}{s+1}$ Now,$f(t)= L^{-1}[e^{-\frac{\pi}{4}s}(-\frac{2}{s+2}+\frac{5}{s+1}-\frac{3s}{s^2+1}+\frac{1}{s^2+1})+3(\frac{1}{s+1}-\frac{1}{s+2})+\frac{2}{s+2}-\frac{1}{s+1}]\\ =[-2e^{-2(t-\frac{\pi}{4})}+5e^{-2(t-\frac{\pi}{4})}-3\cos (t-\frac{\pi}{4})+\sin (t-\frac{\pi}{4})]u_{\frac{\pi}{4}}(t)+2e^{-2t}-e^{-t}+3e^{-t}-3e^{-2t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.