Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 32

Answer

See below

Work Step by Step

We are given that $y'-3y=f(t)$ and $y(0)=2$ Let's decide $f(t)=\sin t(1-u_1(t))+u_1(t)\\ =\sin t+(1-\sin t)u_1(t)$ We take the Laplace transform of both sides of the differential equation to obtain: $[sY(s)-y(0)]-3Y(s)=\frac{1}{s^2+1}+e^{-s}(\frac{1}{s}-\frac{1}{s^2+1})$ Substituting in the given initial values and rearranging terms yields $Y(s)(s-3)-2=\frac{1}{s^2+1}+e^{-s}(\frac{1}{s}-\frac{1}{s^2+1})\\ Y(s)(s-3)=\frac{1}{s^2+1}+e^{-s}(\frac{1}{s}-\frac{1}{s^2+1})+2$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{1}{(s^2+1)(s-3)}+\frac{2}{s-3}+e^{-s}[\frac{1}{s(s-3)}-\frac{1}{(s-3)(s^2+1)}]\\ =\frac{1}{10(s-3)}-\frac{s}{10(s^2+1)}-\frac{3}{10(s^2+1)}+e^{-s}[\frac{s-2}{3s}-(\frac{1}{10(s-3)}-\frac{s+3}{10(s^2+1})]$ Now,$f(t)= L^{-1}[\frac{1}{10(s-3)}-\frac{s}{10(s^2+1)}-\frac{3}{10(s^2+1)}+e^{-s}[\frac{s-2}{3s}-(\frac{1}{10(s-3)}-\frac{s+3}{10(s^2+1})]]\\ =\frac{1}{10}e^{3t}-\frac{1}{10}\cos t-\frac{3}{10}\sin t+2e^{3t}+\frac{1}{3}e^{3(t-1)}u_1(t)+[\frac{1}{10}e^{3(t-1)}-\frac{1}{10}\cos (t-1)-\frac{3}{10}\sin (t-1)]u_1(t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.