Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 40

Answer

See below

Work Step by Step

We are given that $y''+4y'+5y=5u_3(t)$ and $y(0)=2\\ y'(0)=1$ We take the Laplace transform of both sides of the differential equation to obtain: $[s^2Y(s)-sY(0)-Y'(0)]+4[sY(s)-y(0)]+5Y(s)=\frac{5e^{-3s}}{s}$ Substituting in the given initial values and rearranging terms yields $Y(s)(s^2+4s+5)-2s-9=\frac{5e^{-3s}}{s}\\ Y(s)(s^2+4s+5)=\frac{5e^{-3s}}{s}+2s+9$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{5e^{-3s}}{s(s+1)(s+4)}+\frac{2s}{(s+1)(s+4)}+\frac{9}{(s+1)(s+4)}\\ =5e^{-3s}(\frac{1}{4s}-\frac{1}{3(s+1)}+\frac{1}{12(s+4)})+(\frac{-2}{3(s+1)}+\frac{8}{3(s+4)})+\frac{3}{s+1}-\frac{3}{s+4}$ Now,$f(t)= L^{-1}[5e^{-3s}(\frac{1}{4s}-\frac{1}{3(s+1)}+\frac{1}{12(s+4)})+(\frac{-2}{3(s+1)}+\frac{8}{3(s+4)})+\frac{3}{s+1}-\frac{3}{s+4}]\\ =5(\frac{e^{-(t-3)}}{12}+\frac{e^{-4(t-3)}}{12})u_3(t)+\frac{7}{3}e^{-t}-\frac{1}{3}e^{-4t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.