Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 705: 30

Answer

See below

Work Step by Step

We are given that $y'+2y=u_{\pi}(t)\cos 2t$ and $y(0)=3$ We take the Laplace transform of both sides of the differential equation to obtain: $[sY(s)-y(0)]-Y(s)=\frac{2e^{-\pi s}}{s^2+4}$ Substituting in the given initial values and rearranging terms yields $Y(s)(s+2)-3=\frac{2e^{-\pi s}}{s^2+4}\\ Y(s)(s+2)=\frac{2e^{-\pi s}}{s^2+4}+3$ Thus, we have solved for the Laplace transform of $y(t)$. To find y itself, we must take the inverse Laplace transform. We first decompose the right-hand side into partial fractions to obtain: $Y(s)=\frac{2e^{-\pi s}}{(s^2+4)(s+2)}+\frac{3}{s+2}\\ =\frac{e^{-\pi s}}{4(s+2)}-\frac{e^{-\pi s} s}{4(s^2+4)}+\frac{e^{-\pi s}}{2(s^2+4)}+\frac{3}{s+2}$ Now,$f(t)= L^{-1}[\frac{e^{-\pi s}}{4(s+2)}-\frac{e^{-\pi s} s}{4(s^2+4)}+\frac{e^{-\pi s}}{2(s^2+4)}+\frac{3}{s+2}]\\ =\frac{u_{\pi}t}{4}e^{-2(t-\pi)}-\frac{1}{4}\cos 2(t-\pi)u_{\pi}t+\frac{1}{4}\sin 2(t-\pi)u_{\pi} t+3e^{-2t}\\ =\frac{u_{\pi}t}{4}(e^{-2(t-\pi)}-\cos 2t+\sin 2t)+e^{-2t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.