Answer
See below
Work Step by Step
We are given that $F(s)=\frac{e^{-4s}(s+3)}{s^2-6s+13}$
Now,$f(t)= L^{-1}[\frac{e^{-4s}(s+3)}{s^2-6s+13}]\\
=L^{-1}[e^{-4s}(\frac{e^{s-3}}{(s-3)^2+4}+\frac{6}{(s-3)^2+4})]\\
=L^{-1}[e^{-4s}][L(e^{3t}(\cos 2t+3\sin 2t))]\\
=u_4(t)[e^{3(t-4)}\cos 2(t-4)+3e^{t(-4)}\sin 2(t-4)]$