#### Answer

$\sqrt[3]{\dfrac{25}{2}}=\dfrac{5}{\sqrt[3]{10}}$

#### Work Step by Step

$\sqrt[3]{\dfrac{25}{2}}$
Rewrite this expression as $\dfrac{\sqrt[3]{25}}{\sqrt[3]{2}}$:
$\sqrt[3]{\dfrac{25}{2}}=\dfrac{\sqrt[3]{25}}{\sqrt[3]{2}}=...$
Multiply this fraction by $\dfrac{\sqrt[3]{5}}{\sqrt[3]{5}}$ and simplify if possible:
$...=\dfrac{\sqrt[3]{25}}{\sqrt[3]{2}}\cdot\dfrac{\sqrt[3]{5}}{\sqrt[3]{5}}=\dfrac{\sqrt[3]{125}}{\sqrt[3]{10}}=\dfrac{5}{\sqrt[3]{10}}$