#### Answer

$\sqrt{\dfrac{12}{7}}=\dfrac{6}{\sqrt{21}}$

#### Work Step by Step

$\sqrt{\dfrac{12}{7}}$
Rewrite this expression as $\dfrac{\sqrt{4\cdot3}}{\sqrt{7}}$ and simplify it:
$\sqrt{\dfrac{12}{7}}=\dfrac{\sqrt{4\cdot3}}{\sqrt{7}}=\dfrac{2\sqrt{3}}{\sqrt{7}}=...$
Multiply this expression by $\dfrac{\sqrt{3}}{\sqrt{3}}$ and simplify again if possible:
$...=\dfrac{2\sqrt{3}}{\sqrt{7}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}=\dfrac{2\sqrt{3^{2}}}{\sqrt{21}}=\dfrac{2(3)}{\sqrt{21}}=\dfrac{6}{\sqrt{21}}$