#### Answer

$\dfrac{-3}{\sqrt{6}-2}=-\dfrac{3(\sqrt{6}+2)}{2}$

#### Work Step by Step

$\dfrac{-3}{\sqrt{6}-2}$
Multiply the numerator and the denominator of this expression by the conjugate of the denominator and simplify if possible:
$\dfrac{-3}{\sqrt{6}-2}=\dfrac{-3}{\sqrt{6}-2}\cdot\dfrac{\sqrt{6}+2}{\sqrt{6}+2}=\dfrac{-3(\sqrt{6}+2)}{(\sqrt{6})^{2}-2^{2}}=...$
$...=\dfrac{-3(\sqrt{6}+2)}{6-4}=-\dfrac{3(\sqrt{6}+2)}{2}$