Algebra: A Combined Approach (4th Edition)

Published by Pearson
ISBN 10: 0321726391
ISBN 13: 978-0-32172-639-1

Chapter 10 - Section 10.5 - Rationalizing Numerators and Denominators of Radical Expressions - Exercise Set: 50

Answer

$\dfrac{\sqrt{3x^{5}}}{6}=\dfrac{x^{3}}{2\sqrt{3x}}$

Work Step by Step

$\dfrac{\sqrt{3x^{5}}}{6}$ First, simplify this expression: $\dfrac{\sqrt{3x^{5}}}{6}=\dfrac{x^{2}\sqrt{3x}}{6}=...$ Multiply this expression by $\dfrac{\sqrt{3x}}{\sqrt{3x}}$ and simplify again if possible: $...=\dfrac{x^{2}\sqrt{3x}}{6}\cdot\dfrac{\sqrt{3x}}{\sqrt{3x}}=\dfrac{x^{2}\sqrt{(3x)^{2}}}{6\sqrt{3x}}=\dfrac{x^{2}(3x)}{6\sqrt{3x}}=\dfrac{3x^{3}}{6\sqrt{3x}}=\dfrac{x^{3}}{2\sqrt{3x}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.