Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.5 Strategy for Integration - 7.5 Exercises - Page 548: 58

Answer

$$\sqrt{x^2-1}\ln (x) - \sqrt{x^2-1}+ \sec^{-1}x +C$$

Work Step by Step

Given $$ \int \frac{x \ln x}{\sqrt{x^{2}-1}} d x$$ Use integration by parts , let \begin{aligned} u&=\ln x\ \ \ \ \ \ \ &dv&= \frac{x}{\sqrt{x^2-1}}dx\\ du&=\frac{1}{x}dx\ \ \ \ \ \ &v&=\sqrt{x^2-1} \end{aligned} Then \begin{aligned} \int \frac{x \ln x}{\sqrt{x^{2}-1}} d x&= \sqrt{x^2-1}\ln (x) -\int \frac{\sqrt{x^2-1}}{x}dx \end{aligned} To evaluate $\int \frac{\sqrt{x^2-1}}{x}dx$, Let $$ x= \sec \theta \ \ \ \ \ \ dx= \sec\theta \tan \theta d\theta $$ Then \begin{aligned} \int \frac{\sqrt{x^2-1}}{x}dx&=\int \frac{\sqrt{\sec^2\theta-1}}{\sec\theta } \sec\theta \tan \theta d\theta\\ &=\int \tan^2\theta d\theta \\ &=\int (\sec^2\theta-1) d\theta \\ &=\tan \theta -\theta +C\\ &= \sqrt{x^2-1}- \sec^{-1}x +C \end{aligned} Hence \begin{aligned} \int \frac{x \ln x}{\sqrt{x^{2}-1}} d x&= \sqrt{x^2-1}\ln (x) - \sqrt{x^2-1}+ \sec^{-1}x +C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.