Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.5 Strategy for Integration - 7.5 Exercises - Page 548: 34

Answer

$\displaystyle\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\frac{1+4\cot x}{4-\cot x}dx}=\ln \left( \frac{4\sqrt{2}}{3} \right) $

Work Step by Step

$I=\displaystyle\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\frac{1+4\cot x}{4-\cot x}dx}\\ I=\displaystyle\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\frac{17}{4-\cot x}-4dx}\\ I=\displaystyle\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\frac{17}{4-\cot x}dx}-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{4dx}\\ I=\displaystyle\color{Plum}{\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\frac{17}{4-\cot x}dx}}\color{LimeGreen}{-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{4dx}}\\$ $\displaystyle\color{LimeGreen}{-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{4dx}\\ -\left[ 4x \right] _{\frac{\pi}{4}}^{\frac{\pi}{2}}}$ $\displaystyle\color{Plum}{\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}{\frac{17}{4-\cot x}dx}} $ $\displaystyle{\left[\begin{matrix} b=\cot x& dx=-\frac{db}{\cos\text{ec}^2x}& 1+b^2\\ \end{matrix}=\cot ^2x+1\right]}$ $\displaystyle\int_1^0{\frac{17}{4-b}\times -\frac{db}{b^2+1}}\\ \displaystyle-17\int_1^0{\frac{1}{\left( 4-b \right) \left( b^2+1 \right)}db}\\ \displaystyle-17\int_1^0{\frac{1}{-\left( b-4 \right) \left( b^2+1 \right)}db}\\ \displaystyle17\int_1^0{\frac{1}{\left( b-4 \right) \left( b^2+1 \right)}db}$ $\displaystyle\frac{1}{\left( b-4 \right) \left( b^2+1 \right)}\equiv \frac{A}{b-4}+\frac{Bb+C}{b^2+1}\\ 1=A\left( b^2+1 \right) +\left( b-4 \right) \left( Bb+C \right) \\ 1=Ab^2+A+Bb^2+Cb-4Bb-4C\\ 1=\left( A+B \right) b^2+\left( C-4B \right) b+\left( A-4C \right)$ $b=0\ \ \therefore \ \ 1=A-4C\ \cdots\ \left( 1 \right) \\ \begin{eqnarray} b=1\ \ \therefore \ \ \quad0&=&A+B+C-4B\\ 3B&=&A+C\ \cdots\ \left( 2 \right) \end{eqnarray}$ $\begin{eqnarray} b=-1\ \therefore \ 0&=&A+B-C+4B\\ -5B&=&A-C\ \cdots\ \left( 3 \right) \end{eqnarray}$ $\left( 2 \right) +\left( 3 \right) \\ \begin{eqnarray} -2B&=&2A\\ -B&=&A\ ...\ \left( 4 \right) \end{eqnarray}$ $\left( 4 \right)$ in $\left( 3 \right)\\ \begin{eqnarray} -5B&=&-B-C\\ 4B&=&C \end{eqnarray}$ $\left( 4 \right) ,\left( 5 \right)$ in $\left( 1 \right) \\ \begin{eqnarray} 1&=&A-4C\\ 1&=&-B-16B\\ B&=&-1/17\\ \end{eqnarray}\\ A=1/17\\ C=-4/17\\ $ $\displaystyle17\int_1^0{\frac{1}{17\left( b-4 \right)}+\frac{-\frac{b}{17}-\frac{4}{17}}{b^2+1}db}\\ \displaystyle\int_1^0{\frac{1}{\left( b-4 \right)}-\frac{b-4}{b^2+1}db}\\ \displaystyle\int_1^0{\frac{1}{b-4}-\frac{b}{b^2+1}+\frac{4}{b^2+1}db}\\ \displaystyle\color{plum}{\int_1^0{\frac{1}{b-4}}db-\int_1^0{\frac{b}{b^2+1}db}+4\int_1^0{\frac{1}{b^2+1}db}}\\ \displaystyle\color{orange}{\int_1^0{\frac{1}{b-4}}db}\color{tan}{-\int_1^0{\frac{b}{b^2+1}db}}\color{blue}{+4\int_1^0{\frac{1}{b^2+1}db}}$ $\displaystyle\color{orange}{\int_1^0{\frac{1}{b-4}}\\ \left[ \ln \left| b-4 \right| \right] _{1}^{0}}$ $\displaystyle\color{tan}{-\int_1^0{\frac{b}{b^2+1}db}}$ $\displaystyle{\left[\begin{matrix} z=b^2+1& db=\frac{dz}{2b}\\ \end{matrix}\right]} $ $ \displaystyle-\int_2^1{\frac{b}{z}\frac{dz}{2b}}\\ \displaystyle-\frac{1}{2}\int_2^1{\frac{1}{z}dz}\\ \displaystyle\color{tan}{-\frac{1}{2}\left[ \ln z \right] _{2}^{1}}$ $\displaystyle\color{blue}{4\int_1^0{\frac{1}{b^2+1}db}}$ $\displaystyle{\left[\begin{matrix} b=\tan \theta& b^2=\tan ^2\theta\\ \frac{db}{d\theta}=\sec ^2\theta& db=\sec ^2\theta d\theta\\ \end{matrix}\right]}$ $\displaystyle4\int_{\frac{\pi}{4}}^0{\frac{1}{\sec ^2\theta}\sec ^2\theta d\theta}\\ \displaystyle4\int_{\frac{\pi}{4}}^0{1\ d\theta}\\ \displaystyle\color{blue}{{4\left[ \theta \right] _{\frac{\pi}{4}}^{0}}}$ $I=\displaystyle\color{orange}{\left[ \ln \left| b-4 \right| \right] _{1}^{0}}\color{tan}{-\frac{1}{2}\left[ \ln z \right] _{2}^{1}}\color{blue}{+4\left[ \theta \right] _{\frac{\pi}{4}}^{0}}\color{limegreen}{-\left[ 4x \right] _{\frac{\pi}{4}}^{\frac{\pi}{2}}}\\ I=\displaystyle\ln \left( \frac{4\sqrt{2}}{3} \right) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.