Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.5 Strategy for Integration - 7.5 Exercises - Page 548: 76

Answer

$$\frac{1}{2}x\sqrt{x^2+1}-\frac{1}{2}\ln \left|x+\sqrt{x^2+1}\right|+C$$

Work Step by Step

Given $$\int \frac{x^2}{\sqrt{x^2+1}} d x$$ Apply Trigonometric Substitution \begin{aligned} x&=\tan u\ \ \ \to \ \ dx=\sec^2 udu \end{aligned} Then \begin{aligned} \int \frac{x^2}{\sqrt{x^2+1}} d x&= \int \frac{\tan^2u }{\sqrt{\tan^2u+1}} \sec^2u du\\ &= \int \tan^2 u \sec udu \\ &=\int \left(-1+\sec ^2\left(u\right)\right)\sec \left(u\right)du\\ &=-\int \sec \left(u\right)du+\int \sec ^3\left(u\right)du \end{aligned} Now, evaluate \begin{aligned} \int \sec ^3\left(u\right)du\end{aligned} Let \begin{aligned} U&= \sec u \ \ \ \ \ \ dV= \sec^2udu\\ dU&= \sec u\tan u du \ \ \ \ \ \ V = \tan u\end{aligned} Then \begin{aligned}\int \sec ^3\left(u\right)du&= \sec u\tan u -\int \sec u\tan^2 udu\\ &= \sec u\tan u -\int \sec u(\sec^2 u-1)du\\ 2\int \sec^3 u du&= \sec u\tan u + \ln |\sec u+\tan u|+c \end{aligned} Hence \begin{aligned} \int \frac{x^2}{\sqrt{x^2+1}} d x&= \int \frac{\tan^2u }{\sqrt{\tan^2u+1}} \sec^2u du\\ &= \int \tan^2 u \sec udu \\ &=\int \left(-1+\sec ^2\left(u\right)\right)\sec \left(u\right)du\\ &=-\int \sec \left(u\right)du+\int \sec ^3\left(u\right)du\\ &= -\frac{1}{2}\ln |\sec u+\tan u | +\frac{1}{2}\sec u \tan u+c\\ &= \frac{1}{2}x\sqrt{x^2+1}-\frac{1}{2}\ln \left|x+\sqrt{x^2+1}\right|+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.