Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.5 Strategy for Integration - 7.5 Exercises - Page 548: 59

Answer

$$\frac{1}{32} \ln \left|\frac{x-2}{x+2}\right|-\frac{1}{16} \tan ^{-1}\left(\frac{x}{2}\right)+C$$

Work Step by Step

Given $$ \int \frac{d x}{x^4-16} $$ Using partial fractions \begin{aligned} \frac{1}{\left(x^2+4\right)\left(x+2\right)\left(x-2\right)}&=\frac{a_1x+a_0}{x^2+4}+\frac{a_2}{x+2}+\frac{a_3}{x-2}\\ &= \frac{ \left(a_1x+a_0\right)\left(x+2\right)\left(x-2\right)+a_2\left(x^2+4\right)\left(x-2\right)+a_3\left(x^2+4\right)\left(x+2\right)}{(x^2+4)(x-2)(x+2)}\\ 1&=\left(a_1x+a_0\right)\left(x+2\right)\left(x-2\right)+a_2\left(x^2+4\right)\left(x-2\right)+a_3\left(x^2+4\right)\left(x+2\right) \end{aligned} At $x=2\to a_3= \frac{1}{32},\ \ x=-2\to a_2= \frac{-1}{32} $, and $$1=\left(a_1x+a_0\right)\left(x+2\right)\left(x-2\right)+\left(-\frac{1}{32}\right)\left(x^2+4\right)\left(x-2\right)+\frac{1}{32}\left(x^2+4\right)\left(x+2\right)$$ Then $$1=a_1x^3+a_0x^2+\frac{1}{8}x^2-4a_1x-4a_0+\frac{1}{2}$$ $$1=a_1x^3+x^2\left(a_0+\frac{1}{8}\right)-4a_1x+\left(\frac{1}{2}-4a_0\right) $$ It follows that $$a_0=-\frac{1}{8},\:a_1=0$$ Hence \begin{aligned} \int \frac{d x}{x^4-16} &=\int\left(\frac{1 / 32}{x-2}-\frac{1 / 32}{x+2}-\frac{1 / 8}{x^2+4}\right) d x\\ &=\frac{1}{32} \ln |x-2|-\frac{1}{32} \ln |x+2|-\frac{1}{8} \cdot \frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C \\ &=\frac{1}{32} \ln \left|\frac{x-2}{x+2}\right|-\frac{1}{16} \tan ^{-1}\left(\frac{x}{2}\right)+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.