Answer
$f_d = 318~Hz$
Work Step by Step
We can write an expression for $V_R$:
$V_R= I_R~R$
We can write an expression for $V_L$:
$V_L= I_L~X_L$
We can equate the two expressions to find $f_d$:
$V_R = V_L$
$I_R~R = I_L~X_L$
$R = X_L$
$R = \omega_d~L$
$R = 2\pi~f_d~L$
$f_d = \frac{R}{2\pi~L}$
$f_d = \frac{80.0~\Omega}{(2\pi)~(40.0\times 10^{-3}~H)}$
$f_d = 318~Hz$