Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 31 - Electromagnetic Oscillations and Alternating Current - Problems - Page 936: 5

Answer

45.2 mA

Work Step by Step

We know that Maximum $U_{E}$= Maximum $U_{B}$= Total energy. $\implies \frac{q_{max}^{2}}{2C}=\frac{Li_{max}^{2}}{2}$ $\implies i_{max}=\sqrt {\frac{q_{max}^{2}}{LC}}=\frac{q_{max}}{\sqrt {LC}}$ Given: $q_{max}= 3.00\,\mu C$, L=1.10 mH, C= $4.00\,\mu F$ Result: $ i_{max}=\frac{3.00\times10^{-6}C}{\sqrt {1.10\times10^{-3}H\times4.00\times10^{-6}F}}=45.2\times10^{-3}A=45.2\,mA$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.