Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 31 - Electromagnetic Oscillations and Alternating Current - Problems - Page 936: 11b

Answer

A capacitor with capacitance $~~36~pF~~$ should be added in parallel.

Work Step by Step

We can find the required ratio $\frac{f_{max}}{f_{min}}$: $\frac{f_{max}}{f_{min}} = \frac{1.60~MHz}{0.54~MHz} = 2.963$ We can find an expression for the maximum frequency $f_{max}$: $\omega = \frac{1}{\sqrt{L~C}}$ $2\pi~f_{max} = \frac{1}{\sqrt{L~C_{min}}}$ $f_{max} = \frac{1}{2\pi~\sqrt{L~C_{min}}}$ We can find an expression for the minimum frequency $f_{min}$: $\omega = \frac{1}{\sqrt{L~C}}$ $2\pi~f_{min} = \frac{1}{\sqrt{L~C_{max}}}$ $f_{min} = \frac{1}{2\pi~\sqrt{L~C_{max}}}$ When a capacitor of capacitance $C$ is added in parallel, then $C_{min} = C+10~pF$ and $C_{max} = C+365~pF$ We can find $C$: $\frac{f_{max}}{f_{min}} = \frac{\frac{1}{2\pi~\sqrt{L~C_{min}}}}{\frac{1}{2\pi~\sqrt{L~C_{max}}}}$ $\frac{f_{max}}{f_{min}} = \frac{2\pi~\sqrt{L~C_{max}}}{2\pi~\sqrt{L~C_{min}}}$ $\frac{f_{max}}{f_{min}} = \frac{\sqrt{C_{max}}}{\sqrt{C_{min}}}$ $\frac{f_{max}}{f_{min}} = \sqrt{\frac{C_{max}}{C_{min}}} = 2.963$ $\frac{C_{max}}{C_{min}} = 8.779$ $C_{max} = 8.779~C_{min}$ $C+365~pF = 8.779~(C+10~pF)$ $7.779~C = 277.21~pF$ $C = \frac{277.21~pF}{7.779}$ $C = 36~pF$ A capacitor with capacitance $~~36~pF~~$ should be added in parallel.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.