Answer
$\frac{f_{max}}{f_{min}} = 6.0$
Work Step by Step
We can find an expression for the maximum frequency $f_{max}$:
$\omega = \frac{1}{\sqrt{L~C}}$
$2\pi~f_{max} = \frac{1}{\sqrt{L~C_{min}}}$
$f_{max} = \frac{1}{2\pi~\sqrt{L~C_{min}}}$
We can find an expression for the minimum frequency $f_{min}$:
$\omega = \frac{1}{\sqrt{L~C}}$
$2\pi~f_{min} = \frac{1}{\sqrt{L~C_{max}}}$
$f_{min} = \frac{1}{2\pi~\sqrt{L~C_{max}}}$
We can find the ratio of $\frac{f_{max}}{f_{min}}$:
$\frac{f_{max}}{f_{min}} = \frac{\frac{1}{2\pi~\sqrt{L~C_{min}}}}{\frac{1}{2\pi~\sqrt{L~C_{max}}}}$
$\frac{f_{max}}{f_{min}} = \frac{2\pi~\sqrt{L~C_{max}}}{2\pi~\sqrt{L~C_{min}}}$
$\frac{f_{max}}{f_{min}} = \frac{\sqrt{C_{max}}}{\sqrt{C_{min}}}$
$\frac{f_{max}}{f_{min}} = \sqrt{\frac{C_{max}}{C_{min}}}$
$\frac{f_{max}}{f_{min}} = \sqrt{\frac{365~pF}{10~pF}}$
$\frac{f_{max}}{f_{min}} = 6.0$