Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 31 - Electromagnetic Oscillations and Alternating Current - Problems - Page 936: 11a

Answer

$\frac{f_{max}}{f_{min}} = 6.0$

Work Step by Step

We can find an expression for the maximum frequency $f_{max}$: $\omega = \frac{1}{\sqrt{L~C}}$ $2\pi~f_{max} = \frac{1}{\sqrt{L~C_{min}}}$ $f_{max} = \frac{1}{2\pi~\sqrt{L~C_{min}}}$ We can find an expression for the minimum frequency $f_{min}$: $\omega = \frac{1}{\sqrt{L~C}}$ $2\pi~f_{min} = \frac{1}{\sqrt{L~C_{max}}}$ $f_{min} = \frac{1}{2\pi~\sqrt{L~C_{max}}}$ We can find the ratio of $\frac{f_{max}}{f_{min}}$: $\frac{f_{max}}{f_{min}} = \frac{\frac{1}{2\pi~\sqrt{L~C_{min}}}}{\frac{1}{2\pi~\sqrt{L~C_{max}}}}$ $\frac{f_{max}}{f_{min}} = \frac{2\pi~\sqrt{L~C_{max}}}{2\pi~\sqrt{L~C_{min}}}$ $\frac{f_{max}}{f_{min}} = \frac{\sqrt{C_{max}}}{\sqrt{C_{min}}}$ $\frac{f_{max}}{f_{min}} = \sqrt{\frac{C_{max}}{C_{min}}}$ $\frac{f_{max}}{f_{min}} = \sqrt{\frac{365~pF}{10~pF}}$ $\frac{f_{max}}{f_{min}} = 6.0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.