Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 15 - Oscillations - Problems - Page 441: 95

Answer

$I = 0.079~kg \cdot m^2$

Work Step by Step

We can find the period: $T = \frac{50~s}{20~cycles} = 2.5~s$ We can find the rotational inertia: $T = 2\pi \sqrt{\frac{I}{\kappa}}$ $\frac{T}{2\pi} = \sqrt{\frac{I}{\kappa}}$ $\frac{T^2}{4\pi^2} = \frac{I}{\kappa}$ $I = \frac{T^2\kappa}{4\pi^2}$ $I = \frac{(2.5~s)^2 (0.50 ~N\cdot m)}{4\pi^2}$ $I = 0.079~kg \cdot m^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.