Answer
(a) $0.967\,kJ$
(b) $3.15\times10^{5}\,kcal$
(c) $1.39\,kWh$
(d) $6.88\,Cal$
Work Step by Step
Using the energy conversion factors, we have
(a) $231\,cal= 231\,cal\times\frac{4.184\,J}{1\,cal}\times\frac{1\,kJ}{1000\,J}$
$=0.967\,kJ$
(b) $132\times10^{4}\,kJ=132\times10^{4}\,kJ\times\frac{1\,kcal}{4.184\,kJ}$
$=3.15\times10^{5}\,kcal$
(c) $4.99\times10^{3}\,kJ=4.99\times10^{6}\,J\times\frac{1\,kWh}{3.60\times10^{6}\,J}$
$=1.39\,kWh$
(d) $2.88\times10^{4}\,J=2.88\times10^{4}\,J\times\frac{1\,Cal}{4184\,J}$
$=6.88\,Cal$