Answer
(a) $1.92\times10^{9}\,J$
(b) $51.4\,Cal$
(c) $2.37\times 10^{6}\,J$
(d) $681\,cal$
Work Step by Step
Using energy conversion factors, we have
(a) $534\,kWh= 534\,kWh\times\frac{3.60\times10^{6}\,J}{1\,kWh}$
$=1.92\times10^{9}\,J$
(b) $215\,kJ=215\,kJ\times\frac{1000\,J}{1\,kJ}\times\frac{1\,Cal}{4184\,J}$
$=51.4\,Cal$
(c) $567\,Cal= 567\,Cal\times\frac{4184\,J}{1\,Cal}$
$=2.37\times 10^{6}\,J$
(d) $2.85\times10^{3}\,J=2.85\times10^{3}\,J\times\frac{1\,cal}{4.184\,J}$
$=681\,cal$