Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 307: 61c

Answer

$P(jury~of~2~students~and~3~faculty)=\frac{3360}{8568}\approx0.3922$

Work Step by Step

The order in which the individuals are selected does not matter and no individual can be selected more than once. The number of combinations of 8 distinct students taken 2 at a time: $_{8}C_2=\frac{8!}{2!(8-2)!}=\frac{8!}{2!\times6!}=\frac{8\times7\times6\times5\times4\times3\times2\times1}{2\times6\times5\times4\times3\times2\times1}=\frac{8\times7}{2}=28$ The number of combinations of 10 distinct faculty taken 3 at a time: $_{10}C_3=\frac{10!}{3!(10-3)!}=\frac{10!}{3!\times7!}=\frac{10\times9\times8\times7\times6\times5\times4\times3\times2\times1}{3\times2\times1\times7\times6\times5\times4\times3\times2\times1}=\frac{10\times9\times8}{6}=120$ Using the Multiplication Rule of Counting (page 298): $N(jury~of~2~students~and~3~faculty)=28\times120=3360$ The number of combinations of 18 distinct individuals (8 students and 10 faculty) taken 5 at a time: $N(S)=~_{18}C_5=\frac{18!}{5!(18-5)!}=\frac{18!}{5!\times13!}=\frac{18\times17\times16\times15\times14\times13!}{5\times4\times3\times2\times1\times13!}=\frac{1,028,160}{120}=8568$ Using the Classical Method (page 259): $P(jury~of~2~students~and~3~faculty)=\frac{N(jury~of~2~students~and~3~faculty)}{N(S)}=\frac{3360}{8568}\approx0.3922$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.