Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 307: 69

Answer

$P(accepted)=\frac{2380}{4845}\approx0.4912$

Work Step by Step

Combinations of 20 distinct modems (defective or not) taken 4 at a time (the order in which the modems are selected does not matter): $N(S)=~_{20}C_4=\frac{20!}{4!(20-4)!}=\frac{20!}{4!\times16!}$ But, $20!=20\times19\times18\times17\times(16\times15\times14\times...\times3\times2\times1)=20\times19\times18\times17\times16!$ $_{20}C_4=\frac{20\times19\times18\times17\times16!}{4!\times16!}=\frac{20\times19\times18\times17}{4\times3\times2\times1}=4845$ There are $20-3=17$ non defective modems. Combinations of 17 distinct non defective modems taken 4 at a time (the order in which the modems are selected does not matter): $N(non~defective)=~_{17}C_4=\frac{17!}{4!(17-4)!}=\frac{17!}{4!\times13!}$ But, $17!=17\times16\times15\times14\times(13\times12\times11\times10\times...\times3\times2\times1)=17\times16\times15\times14\times13!$ $_{16}C_4=\frac{17\times16\times15\times14\times13!}{4!\times13!}=\frac{17\times16\times15\times14}{4\times3\times2\times1}=2380$ Using the Classical Method (page 259): $P(accepted)=\frac{N(non~defective)}{N(S)}=\frac{2380}{4845}\approx0.4912$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.