Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 307: 66a

Answer

$P(2~contain~diet~soda)=\frac{27}{220}\approx0.1227$

Work Step by Step

Combinations of 12 distinct cans (regular or diet soda) taken 3 at a time (the order in which the cans are selected does not matter): $N(S)=~_{12}C_3=\frac{12!}{3!(12-3)!}=\frac{12!}{3!\times9!}=\frac{12\times11\times10\times9\times8\times7\times6\times5\times4\times3\times2\times1}{3\times2\times1\times9\times8\times7\times6\times5\times4\times3\times2\times1}=220$ Combinations of 3 distinct diet soda taken 2 at a time (the order in which the cans are selected does not matter): $N(2~diet~soda~among~the~3~diet~soda)=~_{3}C_2=\frac{3!}{2!(3-2)!}=\frac{3!}{2!\times1!}=\frac{3\times2\times1}{2\times1\times1}=3$ Combinations of 9 distinct regular soda I do not like taken 1 at a time (the order in which the cans are selected does not matter): $N(1~regular~soda~among~the~9~regular~soda)=~_{9}C_1=\frac{9!}{1!(9-1)!}=\frac{9!}{1!\times8!}=\frac{9\times8\times7\times6\times5\times4\times3\times2\times1}{1\times8\times7\times6\times5\times4\times3\times2\times1}=9$ Using the Multiplication Rule of Counting (page 298): $N(2~diet~soda~and~1~regular~soda)=3\times9=27$ Using the Classical Method (page 259): $P(2~contain~diet~soda)=\frac{N(2~diet~soda~and~1~regular~soda)}{N(S)}=\frac{27}{220}\approx0.1227$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.