Answer
$P(accepted)=\frac{54,891,018}{75,287,520}\approx0.7291$
Work Step by Step
Combinations of 100 distinct televisions (defective or not) taken 5 at a time (the order in which the televisions are selected does not matter):
$N(S)=~_{100}C_5=\frac{100!}{5!(100-5)!}=\frac{100!}{5!\times95!}$
But, $100!=100\times99\times98\times97\times96\times(95\times94\times93\times...\times3\times2\times1)=100\times99\times98\times97\times96\times95!$
$_{100}C_5=\frac{100\times99\times98\times97\times96\times95!}{5!\times95!}=\frac{100\times99\times98\times97\times96}{5\times4\times3\times2\times1}=75,287,520$
There are $100-6=94$ non defective televisions.
Combinations of 94 distinct non defective televisions taken 5 at a time (the order in which the televisions are selected does not matter):
$N(non~defective)=~_{94}C_5=\frac{94!}{5!(94-5)!}=\frac{94!}{5!\times89!}$
But, $94!=94\times93\times92\times91\times90\times(89\times88\times87\times...\times3\times2\times1)=94\times93\times92\times91\times90\times89!$
$_{94}C_6=\frac{94\times93\times92\times91\times90\times89!}{5!\times89!}=\frac{94\times93\times92\times91\times90}{5\times4\times3\times2\times1}=54,891,018$
Using the Classical Method (page 259):
$P(accepted)=\frac{N(non~defective)}{N(S)}=\frac{54,891,018}{75,287,520}\approx0.7291$