Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 307: 70

Answer

$P(accepted)=\frac{54,891,018}{75,287,520}\approx0.7291$

Work Step by Step

Combinations of 100 distinct televisions (defective or not) taken 5 at a time (the order in which the televisions are selected does not matter): $N(S)=~_{100}C_5=\frac{100!}{5!(100-5)!}=\frac{100!}{5!\times95!}$ But, $100!=100\times99\times98\times97\times96\times(95\times94\times93\times...\times3\times2\times1)=100\times99\times98\times97\times96\times95!$ $_{100}C_5=\frac{100\times99\times98\times97\times96\times95!}{5!\times95!}=\frac{100\times99\times98\times97\times96}{5\times4\times3\times2\times1}=75,287,520$ There are $100-6=94$ non defective televisions. Combinations of 94 distinct non defective televisions taken 5 at a time (the order in which the televisions are selected does not matter): $N(non~defective)=~_{94}C_5=\frac{94!}{5!(94-5)!}=\frac{94!}{5!\times89!}$ But, $94!=94\times93\times92\times91\times90\times(89\times88\times87\times...\times3\times2\times1)=94\times93\times92\times91\times90\times89!$ $_{94}C_6=\frac{94\times93\times92\times91\times90\times89!}{5!\times89!}=\frac{94\times93\times92\times91\times90}{5\times4\times3\times2\times1}=54,891,018$ Using the Classical Method (page 259): $P(accepted)=\frac{N(non~defective)}{N(S)}=\frac{54,891,018}{75,287,520}\approx0.7291$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.