Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 307: 64

Answer

$P(selecting~two~60-watt~bulbs)=\frac{153}{435}\approx0.3517$

Work Step by Step

Combinations of 30 distinct light bulbs (40-watt and 60-watt) taken 2 at a time (the order in which the light bulbs are selected does not matter): $N(S)=~_{30}C_2=\frac{30!}{2!(30-2)!}=\frac{30!}{2!\times28!}$ But, $30!=30\times29\times(28\times27\times26\times...\times3\times2\times1)=30\times29\times28!$ $_{30}C_2=\frac{30\times29\times28!}{2!\times28!}=\frac{30\times29}{2}=435$ There are 18 60-watt light bulbs. Combinations of 18 distinct 60-watt light bulbs taken 2 at a time (the order in which the 60-watt light bulbs are selected does not matter): $N(selecting~two~60-watt~bulbs)=~_{18}C_2=\frac{18!}{2!(18-2)!}=\frac{18!}{2!\times16!}$ But, $18!=18\times17\times(16\times15\times14\times...\times3\times2\times1)=18\times17\times16!$ $_{18}C_2=\frac{18\times17\times16!}{2!\times16!}=\frac{18\times17}{2}=153$ Using the Classical Method (page 259): $P(selecting~two~60-watt~bulbs)=\frac{N(selecting~two~60-watt~bulbs)}{N(S)}=\frac{153}{435}\approx0.3517$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.