Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 307: 63

Answer

$P(rejected)=\frac{1,054,325}{8,214,570}\approx0.1283$

Work Step by Step

Combinations of 120 distinct electronic components (defective or not) taken 4 at a time (the order in which the components are selected does not matter): $N(S)=~_{120}C_4=\frac{120!}{4!(120-4)!}=\frac{120!}{4!\times116!}$ But, $120!=120\times119\times118\times117\times(116\times115\times114\times...\times3\times2\times1)=120\times119\times118\times117\times116!$ $_{120}C_4=\frac{120\times119\times118\times117\times116!}{4!\times116!}=\frac{120\times119\times118\times117}{4\times3\times2\times1}=8,214,570$ There are $120-4=116$ non defective components. Combinations of 116 distinct non defective electronic components taken 4 at a time (the order in which the components are selected does not matter): $N(non~defective)=~_{116}C_4=\frac{116!}{4!(116-4)!}=\frac{116!}{4!\times112!}$ But, $116!=116\times115\times114\times113\times(112\times111\times110\times...\times3\times2\times1)=116\times115\times114\times113\times112!$ $_{116}C_4=\frac{116\times115\times114\times113\times112!}{4!\times112!}=\frac{116\times115\times114\times113}{4\times3\times2\times1}=7,160,245$ Using the Classical Method (page 259): $P(accepted)=\frac{N(non~defective)}{N(S)}=\frac{7,160,245}{8,214,570}\approx0.8717$ The event "rejected" is the complement of "accepted". Using the Complement Rule (page 275): $P(rejected)=1-P(accepted)=1-\frac{7,160,245}{8,214,570}=\frac{8,214,570}{8,214,570}-\frac{7,160,245}{8,214,570}=\frac{1,054,325}{8,214,570}\approx0.1283$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.