Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 307: 67b

Answer

$52$ ways.

Work Step by Step

First, let's find $N(3~twos)$. The order in which the $twos$ are select does not matter and no $two$ can be selected more than once. It is a combination of 4 $twos$ taken 3 at a time: $_4C_3=\frac{4!}{3!(4-3)!}=\frac{4!}{3!\times1!}=\frac{4\times3\times2\times1}{3\times2\times1\times1}=4$ But, $N(3~twos)=N(3~threes)=N(3~fours)=N(3~fives)=N(3~sixs)=N(3~sevens)=N(3~eights)=N(3~nines)=N(3~tens)=N(3~jacks)=N(3~queens)=N(3~kings)=N(3~aces)=4$ $N(3~of~the~same)=N(3~twos~or~3~threes~or~3~fours~or~3~fives~or~3~sixs~or~3~sevens~or~3~eights~or~3~nines~or~3~tens~or~3~jacks~or~3~queens~or~3~kings~or~3~aces)$ $=N(3~twos)+N(3~threes)+N(3~fours)+N(3~fives)+N(3~sixs)+N(3~sevens)+N(3~eights)+N(3~nines)+N(3~tens)+N(3~jacks)+N(3~queens)+N(3~kings)+N(3~aces)=13\times4=52$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.