Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 306: 61b

Answer

$P(jury~of~all~faculty)=\frac{1}{34}\approx0.02941$

Work Step by Step

The order in which the individuals are selected does not matter and no individual can be selected more than once. The number of combinations of 10 distinct students taken 5 at a time: $N(jury~of~all~faculty)=~_{10}C_5=\frac{10!}{5!(10-5)!}=\frac{10!}{5!\times5!}=\frac{10\times9\times8\times7\times6\times5\times4\times3\times2\times1}{5\times4\times3\times2\times1\times5\times4\times3\times2\times1}=\frac{10\times9\times8\times7\times6}{5\times4\times3\times2\times1}=252$ The number of combinations of 18 distinct individuals (8 students and 10 faculty) taken 5 at a time: $N(S)=~_{18}C_5=\frac{18!}{5!(18-5)!}=\frac{18!}{5!\times13!}=\frac{18\times17\times16\times15\times14\times13!}{5\times4\times3\times2\times1\times13!}=\frac{1,028,160}{120}=8568$ Using the Classical Method (page 259): $P(jury~of~all~faculty)=\frac{N(jury~of~all~faculty)}{N(S)}=\frac{252}{8568}=\frac{1}{34}\approx0.02941$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.