Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 306: 61a

Answer

$P(jury~of~all~students)=\frac{1}{153}\approx0.006536$

Work Step by Step

The order in which the individuals are selected does not matter and no individual can be selected more than once. The number of combinations of 8 distinct students taken 5 at a time: $N(jury~of~all~students)=~_8C_5=\frac{8!}{5!(8-5)!}=\frac{8!}{5!\times3!}=\frac{8\times7\times6\times5\times4\times3\times2\times1}{5\times4\times3\times2\times1\times3\times2\times1}=\frac{8\times7\times6}{3\times2\times1}=56$ The number of combinations of 18 distinct individuals (8 students and 10 faculty) taken 5 at a time: $N(S)=~_{18}C_5=\frac{18!}{5!(18-5)!}=\frac{18!}{5!\times13!}=\frac{18\times17\times16\times15\times14\times13!}{5\times4\times3\times2\times1\times13!}=\frac{1,028,160}{120}=8568$ Using the Classical Method (page 259): $P(jury~of~all~students)=\frac{N(jury~of~all~students)}{N(S)}=\frac{56}{8568}=\frac{1}{153}\approx0.006536$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.