Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.5 - Assess Your Understanding - Applying the Concepts - Page 306: 59

Answer

$P(winning~Little~Lotto)=\frac{1}{575,757}\approx0.000001737$

Work Step by Step

The sample space: all the combinations of 39 distinct mumbers (from 1 to 39) taken 5 at a time: $_{39}C_5=\frac{39!}{5!(39-5)!}=\frac{39!}{5!\times34!}$ But, $39!=39\times38\times37\times36\times35\times(34\times33\times32\times...\times3\times2\times1)=39\times38\times37\times36\times35\times34!$ $_{39}C_5=\frac{39\times38\times37\times36\times35\times34!}{5!\times34!}=\frac{39\times38\times37\times36\times35}{5\times4\times3\times2\times1}=\frac{69090840}{120}=575,757$ With one ticket: $N(winning~Little~Lotto)=1$ Using the Classical Method (page 259): $P(winning~Little~Lotto)=\frac{N(winning~Little~Lotto)}{N(S)}=\frac{1}{575,757}\approx0.000001737$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.