Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 8 - Section 8.1 - Polar Coordinates - 8.1 Exercises - Page 593: 36

Answer

The point in rectangular coordinates is $\Big(\dfrac{\sqrt{3}}{2},\dfrac{3}{2}\Big)$

Work Step by Step

$(\sqrt{3},-5\pi/3)$ The point has $r=\sqrt{3}$ and $\theta=-\dfrac{5\pi}{3}$. The formulas for converting polar to rectangular coordinates are $x=r\cos\theta$ and $y=r\sin\theta$ Substitute the known values into the formulas to obtain $x$ and $y$: $x=r\cos\theta$ $x=(\sqrt{3})\cos\Big(-\dfrac{5\pi}{3}\Big)=(\sqrt{3})\Big(\dfrac{1}{2}\Big)=\dfrac{\sqrt{3}}{2}$ $y=r\sin\theta$ $y=(\sqrt{3})\sin\Big(-\dfrac{5\pi}{3}\Big)=(\sqrt{3})\Big(\dfrac{\sqrt{3}}{2}\Big)=\dfrac{(\sqrt{3})^{2}}{2}=\dfrac{3}{2}$ The point in rectangular coordinates is $\Big(\dfrac{\sqrt{3}}{2},\dfrac{3}{2}\Big)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.