Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 544: 77

Answer

We want to verify that $\frac{1 - cos\ a}{sin\ a}=\frac{sin\ a}{1+cos\ a}$ Start with the right-hand side: $\frac{1 - cos\ a}{sin\ a}$, we will multiply by $1=\frac{sin\ a}{1+cos\ a}\frac{1+cos\ a}{sin\ a}$ $=\frac{1 - cos\ a}{sin\ a}\frac{sin\ a}{1+cos\ a}\frac{1+cos\ a}{sin\ a}$, where $(1 - cos\ a)(1 + cos\ a)=(1 - cos^2\ a)$ and $(sin\ a)(sin\ a)=sin^2\ a$ $=\frac{1 - cos^2\ a}{sin^2\ a}\frac{sin\ a}{1+cos\ a}$, where we know that $1 - cos^2\ a=sin^2\ a$ $=\frac{sin^2\ a}{sin^2\ a}\frac{sin\ a}{1+cos\ a}\frac{1}{}$, where we can cancel $\frac{sin^2\ a}{sin^2\ a}$ $=\frac{sin\ a}{1+cos\ a}$, which is equal to the left-hand side.

Work Step by Step

We want to verify that $\frac{1 - cos\ a}{sin\ a}=\frac{sin\ a}{1+cos\ a}$ Start with the right-hand side: $\frac{1 - cos\ a}{sin\ a}$, we will multiply by $1=\frac{sin\ a}{1+cos\ a}\frac{1+cos\ a}{sin\ a}$ $=\frac{1 - cos\ a}{sin\ a}\frac{sin\ a}{1+cos\ a}\frac{1+cos\ a}{sin\ a}$, where $(1 - cos\ a)(1 + cos\ a)=(1 - cos^2\ a)$ and $(sin\ a)(sin\ a)=sin^2\ a$ $=\frac{1 - cos^2\ a}{sin^2\ a}\frac{sin\ a}{1+cos\ a}$, where we know that $1 - cos^2\ a=sin^2\ a$ $=\frac{sin^2\ a}{sin^2\ a}\frac{sin\ a}{1+cos\ a}\frac{1}{}$, where we can cancel $\frac{sin^2\ a}{sin^2\ a}$ $=\frac{sin\ a}{1+cos\ a}$, which is equal to the left-hand side.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.