Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 544: 76

Answer

$\dfrac{\tan v-\cot v}{\tan^{2}v-\cot^{2}v}=\sin v\cos v$

Work Step by Step

$\dfrac{\tan v-\cot v}{\tan^{2}v-\cot^{2}v}=\sin v\cos v$ Factor the denominator on the left side and simplify: $\dfrac{\tan v-\cot v}{(\tan v-\cot v)(\tan v+\cot v)}=\sin v\cos v$ $\dfrac{1}{\tan v+\cot v}=\sin v\cos v$ Replace $\tan v$ by $\dfrac{\sin v}{\cos v}$ and $\cot v$ by $\dfrac{\cos v}{\sin v}$: $\dfrac{1}{\dfrac{\sin v}{\cos v}+\dfrac{\cos v}{\sin v}}=\sin v\cos v$ Evaluate the sum on the denominator and simplify: $\dfrac{1}{\dfrac{\sin^{2}v+\cos^{2}v}{\sin v\cos v}}=\sin v\cos v$ $\dfrac{\sin v\cos v}{\sin^{2}v+\cos^{2}v}=\sin v\cos v$ Since $\sin^{2}v+\cos^{2}v=1$, the identity is proved. $\sin v\cos v=\sin v\cos v$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.