Answer
Verify the following identity:
$sin(b)^6 + cos(b)^6 = 1 - 3 sin(b)^2 cos(b)^2$
Work Step by Step
Verify the following identity:
$sin(b)^6 + cos(b)^6 = 1 - 3 sin(b)^2 cos(b)^2$
$cos(b)^6 = (cos(b)^2)^3 = 1/8 (1 + cos(2 b))^3$:
$((1 + cos(2 b))^3)/(8) + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$(1 + cos(2 b))^3 = 1 + 3 cos(2 b) + 3 cos(2 b)^2 + cos(2 b)^3$:
$1/81 + 3 cos(2 b) + 3 cos(2 b)^2 + cos(2 b)^3 + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$cos(2 b)^2 = 1/2 (1 + cos(4 b))$:
$(1 + 3 cos(2 b) + 3×(1 + cos(4 b))/(2) + cos(2 b)^3)/(8) + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$(1 + cos(4 b))/2 = 1/2 + 1/2 cos(4 b)$:
$(1 + 3 cos(2 b) + 3 1/2 + (cos(4 b))/(2) + cos(2 b)^3)/(8) + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$3 (1/2 + (cos(4 b))/2) = 3/2 + 3/2 cos(4 b)$:
$(1 + 3 cos(2 b) + 3/2 + (3 cos(4 b))/(2) + cos(2 b)^3)/(8) + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$cos(2 b)^3 = 1/4 (3 cos(2 b) + cos(6 b))$:
$(1 + 3 cos(2 b) + 3/2 + (3 cos(4 b))/(2) + (3 cos(2 b) + cos(6 b))/(4))/(8) + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$(3 cos(2 b) + cos(6 b))/4 = 3/4 cos(2 b) + 1/4 cos(6 b)$:
$(1 + 3 cos(2 b) + 3/2 + (3 cos(4 b))/(2) + (3 cos(2 b))/(4) + (cos(6 b))/(4))/(8) + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$1 + 3 cos(2 b) + 3/2 + (3 cos(4 b))/(2) + (3 cos(2 b))/(4) + (cos(6 b))/4$
$= 5/2 + 15/4 cos(2 b) + 3/2 cos(4 b) + 1/4 cos(6 b)$:
$1/85/2 + 15/4 cos(2 b) + 3/2 cos(4 b) + 1/4 cos(6 b) + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$(5/2 + (15 cos(2 b))/(4) + (3 cos(4 b))/(2) + (cos(6 b))/4)/(8)$
$= 5/16 + 15/32 cos(2 b) + 3/16 cos(4 b) + 1/32 cos(6 b)$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/(32) + sin(b)^6 = ^?1 - 3 cos(b)^2 sin(b)^2$
$sin(b)^6 = (sin(b)^2)^3 = 1/8 (1 - cos(2 b))^3$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + ((1 - cos(2 b))^3)/(8) = ^?1 - 3 cos(b)^2 sin(b)^2$
$(1 - cos(2 b))^3 = 1 - 3 cos(2 b) + 3 cos(2 b)^2 - cos(2 b)^3$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + 1/81 - 3 cos(2 b) + 3 cos(2 b)^2 - cos(2 b)^3 = ^?1 - 3 cos(b)^2 sin(b)^2$
$cos(2 b)^2 = 1/2 (1 + cos(4 b))$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + (1 - 3 cos(2 b) + 3×(1 + cos(4 b))/(2) - cos(2 b)^3)/(8) = ^?1 - 3 cos(b)^2 sin(b)^2$
$(1 + cos(4 b))/2 = 1/2 + 1/2 cos(4 b)$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + (1 - 3 cos(2 b) + 3 1/2 + (cos(4 b))/(2) - cos(2 b)^3)/(8) = ^?1 - 3 cos(b)^2 sin(b)^2$
$cos(2 b)^3 = 1/4 (3 cos(2 b) + cos(6 b))$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + (1 - 3 cos(2 b) + 3 (1/2 + (cos(4 b))/2) - (3 cos(2 b) + cos(6 b))/(4))/(8) = ^?1 - 3 cos(b)^2 sin(b)^2$
(3 cos(2 b) + cos(6 b))/4 = 3/4 cos(2 b) + 1/4 cos(6 b):
5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + (1 - 3 cos(2 b) + 3 (1/2 + (cos(4 b))/2) - (3 cos(2 b))/(4) + (cos(6 b))/(4))/(8) = ^?1 - 3 cos(b)^2 sin(b)^2
$3 (1/2 + (cos(4 b))/2) = 3/2 + 3/2 cos(4 b)$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + (1 - 3 cos(2 b) + 3/2 + (3 cos(4 b))/(2) - ((3 cos(2 b))/(4) + (cos(6 b))/4))/(8) = ^?1 - 3 cos(b)^2 sin(b)^2$
$-((3 cos(2 b))/(4) + (cos(6 b))/4) = -3/4 cos(2 b) - 1/4 cos(6 b)$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + (1 - 3 cos(2 b) + 3/2 + (3 cos(4 b))/(2) + -3/4 cos(2 b) - 1/4 cos(6 b))/(8) = ^?1 - 3 cos(b)^2 sin(b)^2$
$1 - 3 cos(2 b) + 3/2 + (3 cos(4 b))/(2) - (3 cos(2 b))/(4) - (cos(6 b))/(4) = 5/2 - 15/4 cos(2 b) + 3/2 cos(4 b) - 1/4 cos(6 b)$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + 1/85/2 - 15/4 cos(2 b) + 3/2 cos(4 b) - 1/4 cos(6 b) = ^?1 - 3 cos(b)^2 sin(b)^2$
$(5/2 - (15 cos(2 b))/(4) + (3 cos(4 b))/(2) - (cos(6 b))/(4))/(8) = 5/16 - 15/32 cos(2 b) + 3/16 cos(4 b) - 1/32 cos(6 b)$:
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + 5/16 - (15 cos(2 b))/(32) + (3 cos(4 b))/(16) - (cos(6 b))/(32) = ^?1 - 3 cos(b)^2 sin(b)^2$
$5/16 + (15 cos(2 b))/(32) + (3 cos(4 b))/(16) + (cos(6 b))/32 + 5/16 - (15 cos(2 b))/(32) + (3 cos(4 b))/(16) - (cos(6 b))/(32)$
$= 5/8 + 3/8 cos(4 b)$:
$5/8 + 3/8 cos(4 b) = ^?1 - 3 cos(b)^2 sin(b)^2$
$cos(b)^2 = 1/2 (1 + cos(2 b))$:
$5/8 + (3 cos(4 b))/(8) = ^?1 - 3(1 + cos(2 b))/(2) sin(b)^2$
$(1 + cos(2 b))/2 = 1/2 + 1/2 cos(2 b)$:
$5/8 + (3 cos(4 b))/(8) = ^?1 - 31/2 + (cos(2 b))/(2) sin(b)^2$
$sin(b)^2 = 1/2 (1 - cos(2 b))$:
$5/8 + (3 cos(4 b))/(8) = ^?1 - 3(1 - cos(2 b))/(2) (1/2 + (cos(2 b))/2)$
$(1 - cos(2 b))/2 = 1/2 - 1/2 cos(2 b)$:
$5/8 + (3 cos(4 b))/(8) = ^?1 - 31/2 - (cos(2 b))/(2) (1/2 + (cos(2 b))/2)$
$-3 (1/2 + (cos(2 b))/2) (1/2 - (cos(2 b))/(2)) = 3/4 cos(2 b)^2 - 3/4$:
$5/8 + (3 cos(4 b))/(8) = ^?1 + (3 cos(2 b)^2)/(4) - (3)/4$
$cos(2 b)^2 = 1/2 (1 + cos(4 b))$:
$5/8 + (3 cos(4 b))/(8) = ^?1 - 3/4 + (3×(1 + cos(4 b))/(2))/(4)$
$(1 + cos(4 b))/2 = 1/2 + 1/2 cos(4 b)$:
$5/8 + (3 cos(4 b))/(8) = ^?1 - 3/4 + (3 1/2 + (cos(4 b))/(2))/(4)$
$(3 (1/2 + (cos(4 b))/2))/(4) = 3/8 + 3/8 cos(4 b)$:
$5/8 + (3 cos(4 b))/(8) = ^?1 - 3/4 + 3/8 + (3 cos(4 b))/(8)$
$1 - 3/4 + 3/8 + (3 cos(4 b))/(8) = 5/8 + 3/8 cos(4 b)$:
$5/8 + (3 cos(4 b))/(8) = ^?5/8 + 3/8 cos(4 b)$
The left hand side and right hand side are identical, thus verifying the identity.