Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 2 - Linear and Quadratic Functions - Section 2.3 Quadratic Functions and Their Zeros - 2.3 Assess Your Understanding - Page 146: 38


Zeros: $-2+\sqrt{2},-2-\sqrt{2}$ $x$-intercepts: $-2+\sqrt{2},-2-\sqrt{2}$

Work Step by Step

To find the zeros of a function $f$, solve the equation $f(x)=0$ The zeros of the function are also the $x-$intercepts. Let $f(x)=0$: $$x^2+4x+2=0$$ Comparing $x^2+4x+2=0$ to $ax^2+bx+c=0$ to find $a,b \text{ and } c$ $$\therefore a = 1, b=4 , c =2$$ Evaluating the discriminant $b^2-4ac$ $$b^2-4ac = (4)^2-4 \times 1 \times 2 = 8$$ The quadratic formula is given by: $$x= \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$$ $$x= \dfrac{-4 \pm \sqrt{8}}{2\times 1}$$ $$x=\dfrac{-4 \pm 2\sqrt{2}}{2}$$ $$x= -2 \pm \sqrt{2}$$ $\therefore x =-2+\sqrt{2} \hspace{20pt} \text{or} \hspace{20pt} x=-2-\sqrt{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.