Answer
$$ - 1$$
Work Step by Step
$$\eqalign{
& \left| {\matrix{
1 & 0 & 0 \cr
0 & { - 1} & 0 \cr
1 & 0 & 1 \cr
} } \right| \cr
& {\rm{Calculating\, the \,determinant \,by \,expanding\, the \,third\, column}} \cr
& \left| {\matrix{
1 & 0 & 0 \cr
0 & { - 1} & 0 \cr
1 & 0 & 1 \cr
} } \right| = 0\left| {\matrix{
0 & { - 1} \cr
0 & 0 \cr
} } \right| - 0\left| {\matrix{
1 & 0 \cr
0 & 0 \cr
} } \right| + 1\left| {\matrix{
1 & 0 \cr
0 & { - 1} \cr
} } \right| \cr
& {\rm{Solving}} \cr
& \left| {\matrix{
1 & 0 & 0 \cr
0 & { - 1} & 0 \cr
1 & 0 & 1 \cr
} } \right| = 0 - 0 + 1\left( { - 1 - 0} \right) \cr
& {\rm{Simplifying}} \cr
& \left| {\matrix{
1 & 0 & 0 \cr
0 & { - 1} & 0 \cr
1 & 0 & 1 \cr
} } \right| = - 1 \cr} $$