Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 884: 17

Answer

$A_{21}=2$; $A_{22}=-6$ and $A_{23}=4$

Work Step by Step

Use the formula $A_{ij}=(-1)^{i+j}M_{ij}$ for $i=2$ and $j=1$ to obtain $A_{21}$. First, we will find the minors for element $a_{21},a_{22}$ and $a_{23}$. $M_{21}=\left|\begin{array}{ll} 0 &1\\ 2 & 1 \end{array}\right|=(0)(1)-(1)(2)=-2$ and $M_{21}=\left|\begin{array}{ll} -2 &1\\ 4 & 1 \end{array}\right|=(-2)(1)-(1)(4)=-6$ and $M_{23}=\left|\begin{array}{ll} 0 &1\\ 2 & 1 \end{array}\right|=(0)(1)-(1)(2)=-2$ Now, $A_{21}=(-1)^{2+1}M_{21}=(-1)(-2)=2$; $A_{22}=(-1)^{2+2}M_{22}=(1)(-6)=-6$ and $A_{23}=(-1)^{2+3}M_{23}=(-1)(-4)=4$ Therefore, $A_{21}=2$; $A_{22}=-6$ and $A_{23}=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.