Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 884: 21

Answer

$$186$$

Work Step by Step

$$\eqalign{ & \left| {\matrix{ 4 & { - 7} & 8 \cr 2 & 1 & 3 \cr { - 6} & 3 & 0 \cr } } \right| \cr & {\rm{Calculating\, the\, determinant\, by \,expanding\, the\, second\, row}} \cr & \left| {\matrix{ 4 & { - 7} & 8 \cr 2 & 1 & 3 \cr { - 6} & 3 & 0 \cr } } \right| = - 2\left| {\matrix{ { - 7} & 8 \cr 3 & 0 \cr } } \right| + 1\left| {\matrix{ 4 & 8 \cr { - 6} & 0 \cr } } \right| - 3\left| {\matrix{ 4 & { - 7} \cr { - 6} & 3 \cr } } \right| \cr & {\rm{Solving}} \cr & \left| {\matrix{ 4 & { - 7} & 8 \cr 2 & 1 & 3 \cr { - 6} & 3 & 0 \cr } } \right| = - 2\left( {0 - 24} \right) + \left( {0 + 48} \right) - 3\left( {12 - 42} \right) \cr & {\rm{Simplifying}} \cr & \left| {\matrix{ 4 & { - 7} & 8 \cr 2 & 1 & 3 \cr { - 6} & 3 & 0 \cr } } \right| = 48 + 48 + 90 \cr & \left| {\matrix{ 4 & { - 7} & 8 \cr 2 & 1 & 3 \cr { - 6} & 3 & 0 \cr } } \right| = 186 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.