Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 884: 18

Answer

$A_{21}=-5$; $A_{22}=1$ and $A_{23}=3$

Work Step by Step

Use the formula $A_{ij}=(-1)^{i+j}M_{ij}$ for $i=2$ and $j=1$ to obtain $A_{21}$. First, we will find the minors for element $a_{21},a_{22}$ and $a_{23}$. $M_{21}=\left|\begin{array}{ll} -1 & 2\\ -3 & 1 \end{array}\right|=(-1)(1)-(2)(-3)=5$ and $M_{21}=\left|\begin{array}{ll} 1 & 2\\ 0 & 1 \end{array}\right|=(1)(1)-(2)(0)=1$ and $M_{23}=\left|\begin{array}{ll} 1 & -1\\ 0 & -3 \end{array}\right|=(1)(-3)-(-1)(0)=-3$ Now, $A_{21}=(-1)^{2+1}M_{21}=(-1)(5)=-5$; $A_{22}=(-1)^{2+2}M_{22}=(1)(1)=1$ and $A_{23}=(-1)^{2+3}M_{23}=(-1)(-3)=3$ Therefore, $A_{21}=-5$; $A_{22}=1$ and $A_{23}=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.