Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 884: 19

Answer

$${A_{21}} = - 6,\,\,\,{A_{22}} = 0,\,\,\,{A_{23}} = - 6$$

Work Step by Step

$$\eqalign{ & \left[ {\matrix{ 1 & 2 & { - 1} \cr 2 & 3 & { - 2} \cr { - 1} & 4 & 1 \cr } } \right] \cr & {\rm{The\, cofactor \,of\, }}{a_{ij}},{\rm{ written\, }}{A_{ij}},{\rm{ is \,defined \,as\, follows}} \cr & {A_{ij}} = {\left( { - 1} \right)^{i + j}} \cdot {M_{ij}} \cr & {\rm{The\, cofactors \,in \,the\, second\, row\, are\, }}{A_{21}},\,\,\,{A_{22}},{\rm{ }}{A_{23}} \cr & {A_{21}} = {\left( { - 1} \right)^{2 + 1}} \cdot {M_{21}} \cr & {A_{21}} = \left( { - 1} \right)\left| {\matrix{ 2 & { - 1} \cr 4 & 1 \cr } } \right| \cr & {A_{21}} = - \left( {2 + 4} \right) \cr & {A_{21}} = - 6 \cr & \cr & {A_{22}} = {\left( { - 1} \right)^{2 + 2}} \cdot {M_{21}} \cr & {A_{22}} = \left| {\matrix{ 1 & { - 1} \cr { - 1} & 1 \cr } } \right| \cr & {A_{22}} = 1 - 1 \cr & {A_{22}} = 0 \cr & \cr & {A_{23}} = {\left( { - 1} \right)^{2 + 3}} \cdot {M_{21}} \cr & {A_{23}} = \left( { - 1} \right)\left| {\matrix{ 1 & 2 \cr { - 1} & 4 \cr } } \right| \cr & {A_{23}} = - \left( {4 + 2} \right) \cr & {A_{23}} = - 6 \cr & \cr & {\rm{The\, cofactors\, of \,the \,second\, row \,are:}} \cr & {A_{21}} = - 6,\,\,\,{A_{22}} = 0,\,\,\,{A_{23}} = - 6 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.