Answer
$\frac{24}{25}$
Work Step by Step
Step 1. Letting $cos^{-1}(\frac{4}{5})=t$, we have $cos(t)=\frac{4}{5}$ and $t\in (0,\frac{\pi}{2})$
Step 2. We have $sin(t)=\sqrt {1-16/25}=\frac{3}{5}$
Step 3. Thus $sin(2cos^{-1}(\frac{4}{5})=sin(2t)=2sin(t)cos(t)=2(\frac{3}{5})(\frac{4}{5})=\frac{24}{25}$