Answer
$\frac{\sqrt 3}{2}$
Work Step by Step
Step 1. Letting $sin^{-1}\frac{\sqrt 3}{2}=t$, we have $sin(t)=\frac{\sqrt 3}{2}$ and $t\in (0,\frac{\pi}{2})$
Step 2. We have $cos(t)=\sqrt {1-3/4}=\frac{1}{2}$
Step 3. Thus $sin(2sin^{-1}\frac{\sqrt 3}{2})=sin(2t)=2sin(t)cos(t)=2(\frac{\sqrt 3}{2})(\frac{1}{2})=\frac{\sqrt 3}{2}$