Answer
$\frac{\sqrt 3}{2}$
Work Step by Step
Step 1. Letting $sin^{-1}\frac{1}{2}=t$, we have $sin(t)=\frac{1}{2}$ and $t\in (0,\frac{\pi}{2})$
Step 2. We have $cos(t)=\sqrt {1-1/4}=\frac{\sqrt 3}{2}$
Step 3. Thus $sin(2sin^{-1}\frac{1}{2})=sin(2t)=2sin(t)cos(t)=2(\frac{1}{2})(\frac{\sqrt 3}{2})=\frac{\sqrt 3}{2}$