Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.8 - Improper Integrals - Exercises 8.8 - Page 501: 7

Answer

$\dfrac{\pi}{2}$

Work Step by Step

Let $f(x)=\int_{0}^{1} \dfrac{1}{\sqrt{1-x^2}} dx$ Consider $x=\sin p $ and $ dx=\cos p dp$ This implies that, $\int_{0}^{k} \dfrac{1}{\sqrt{1-x^2}} dx=\int_{0}^{\sin ^{-1} (k)} \dfrac{\cos p}{\sqrt{1-\sin^2 p}} dp$ Now, $\lim\limits_{k \to 1^{-}} \int_{0}^{\sin ^{-1} (k)} \dfrac{\cos (p)}{\sqrt{1-\sin^2 (p)}} dp=\lim\limits_{k \to 1^{-}}\sin^{-1} (k)$ Thus, $\lim\limits_{k \to 1^{-}}\sin^{-1} (k) =\sin^{-1} (\sin \dfrac{\pi}{2}) =\dfrac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.