Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.8 - Improper Integrals - Exercises 8.8 - Page 501: 14

Answer

$0$

Work Step by Step

Let $f(x)= \int_{-\infty}^{\infty} \dfrac{ x dx}{(x^2+4)^{3/2}}$ This can be re-written as:$ \int_{-\infty}^{\infty} \dfrac{ x dx}{(x^2+4)^{3/2}}=\lim\limits_{k \to \infty} \lim\limits_{l \to \infty} \int_{-k}^l\dfrac{ x dx}{(x^2+4)^{3/2}}=(\dfrac{1}{2})\lim\limits_{k \to \infty} \lim\limits_{l \to \infty} \int_{-k}^l\dfrac{ 2x dx}{(x^2+4)^{3/2}}$ Plug $x^2+4=p $ and $2x dx=dp$ This implies that $(\dfrac{1}{2}) \lim\limits_{k \to \infty} \lim\limits_{l \to -\infty} \int_{k^2+4}^{l^2+4} p^{(-3/2)} dp= \lim\limits_{k \to \infty} \lim\limits_{l \to -\infty} [(-1/\sqrt p)]_{k^2+4}^{l^2+4}=\lim\limits_{k \to \infty}\dfrac{1}{\sqrt{(k^2+4)}}-\lim\limits_{l \to \infty}\dfrac{1}{\sqrt{(l^2+4)}}$ Thus, $\lim\limits_{k \to \infty}\dfrac{1}{\sqrt{\infty}}-\lim\limits_{l \to \infty}\dfrac{1}{\sqrt{\infty}}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.