Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.8 - Improper Integrals - Exercises 8.8 - Page 501: 65

Answer

$a)$ For $p<1$ the integral converges $b)$ For $p>1$ the integral converges.

Work Step by Step

Part $a)$: \[ \int\limits_{1}^{2}\frac{dx}{x(\ln x)^p} \] with $x\in(0,+\infty)$. Let $u=\ln x$, then $du=\frac{dx}{x}$. Therefore \begin{align*} \int\limits_{1}^{2}\frac{dx}{x(\ln x)^p} & = \int\limits_{\ln2}^{0}\frac{du}{u^p}=I \end{align*} If $p=1$ we got \begin{align*} I & = \lim_{t\to 0^+}\int\limits_{t}^{\ln2}\frac{du}{u}\\ & = \lim_{t\to 0^+}\left(\ln(\ln2)-\ln |t|\right) \end{align*} where $\displaystyle\lim_{t\to 0^+}\ln|t|=-\infty$, so $I=+\infty$. Now, if $p\neq 1$ we have \begin{align*} I & = \lim_{t\to 0^+}\int\limits_{t}^{\ln2}\frac{du}{u^p}\\ & = \lim_{t\to 0^+}\frac{u^{1-p}}{1-p}\Bigg|_{t}^{\ln2}\\ & = \lim_{t\to 0^+}\left(\frac{(\ln2)^{1-p}}{1-p}-\frac{t^{1-p}}{1-p}\right) \end{align*} if $1-p>0$ we have $\displaystyle \lim_{t\to 0^+}\frac{t^{1-p}}{1-p}=0$. In the oter hand, if $1-p<0$ we have $\displaystyle \lim_{t\to 0^+}\frac{t^{1-p}}{1-p}=-\infty$. Therefore, when $1-p>0\Leftrightarrow p<1$, the integral converges. Part $b)$: \[ \int\limits_{2}^{+\infty}\frac{dx}{x(\ln x)^p} \] Taking the same change of variable as in the previous literal, we have \[ \int\limits_{2}^{+\infty}\frac{dx}{x(\ln x)^p}=\lim_{t\to +\infty}\int\limits_{\ln2}^{\ln t}\frac{du}{u^p}=I \] If $p=1$ \begin{align*} I & = \lim_{t\to+\infty}\ln|u|\Bigg|_{\ln2}^{\ln t}\\ & = \lim_{t\to+\infty}\left(\ln (\ln t)-\ln(\ln 2)\right) \end{align*} with $\displaystyle \lim_{t\to+\infty}\ln(\ln t)=+\infty$, $I=+\infty$. If $p\neq 1$: \begin{align*} I & = \lim_{t\to 0^+}\frac{u^{1-p}}{1-p}\Bigg|_{\ln 2}^{\ln t}\\ & = \lim_{t\to 0^+}\left(\frac{(\ln t)^{1-p}}{1-p}-\frac{(\ln 2)^{1-p}}{1-p}\right) \end{align*} So, when $1-p>0$, $\displaystyle \lim_{t\to+\infty}(\ln t)^{1-p}=+\infty$, i.e. $I=+\infty$, but if $1-p<0$ we have $\displaystyle \lim_{t\to+\infty}(\ln t)^{1-p}=0$. Therefore, when $1-p<0\Leftrightarrow p>1$, the integral converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.