Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.8 - Improper Integrals - Exercises 8.8 - Page 501: 69

Answer

$2 \pi$

Work Step by Step

We need to use shell mode: $Volume =\int_{0}^{\infty} 2 \pi x e^{-x} dx =2 \pi \lim\limits_{a \to \infty} \int_0^a xe^{-x} dx$ Now, $2 \pi \lim\limits_{a \to \infty} \int_0^a xe^{-x} dx=2 \pi \lim\limits_{a \to \infty} [ (-x e^{-x})_0^a +\int_0^a e^{-x} dx $ or, $=-a e^{-a} +[-e^{-x}]_0^a$ or, $= 2 \pi \lim\limits_{a \to \infty} [-a e^{-a} +(-e^{-a} +e^{-0})]$ or, $= 2 \pi \lim\limits_{a \to \infty} [-a e^{-a}]-2\pi \times (0)+2 \pi$ Now, apply L'Hospital's rule. $V=2 \pi \lim\limits_{a \to \infty} [\dfrac{-a}{e^{a}}]+2 \pi=2 \pi \lim\limits_{a \to \infty} [\dfrac{-1}{e^{a}}]+2 \pi= 2\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.