Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.8 - Improper Integrals - Exercises 8.8 - Page 501: 16

Answer

$$\frac{4+\pi}{2} $$

Work Step by Step

Since $$\int_{0}^{2} \frac{s+1}{\sqrt{4-s^{2}}} d s=\frac{1}{2} \int_{0}^{2} \frac{2 s d s}{\sqrt{4-s^{2}}}+\int_{0}^{2} \frac{d s}{\sqrt{4-s^{2}}}$$ For the first integral, let: $u=4-s^2 \ \to \ du = -2sds$ at $s= 0,\to u= 4$ at $s= 2,\to u= 0$ , then \begin{align*} \int_{0}^{2} \frac{s+1}{\sqrt{4-s^{2}}} d s&=-\frac{1}{2} \int_{4}^{0} \frac{d u}{\sqrt{u}}+\lim _{c \rightarrow 2^{-}} \int_{0}^{c} \frac{d s}{\sqrt{4-s^{2}}}\\ &=\lim _{b \rightarrow 0^{+}} \int_{b}^{4} \frac{d u}{2 \sqrt{u}}+\lim _{c \rightarrow 2^{-}} \int_{0}^{c} \frac{d s}{\sqrt{4-s^{2}}}\\ &=\lim _{b \rightarrow 0^{+}}[\sqrt{u}]_{b}^{4}+\lim _{c \rightarrow 2^{-}}\left[\sin ^{-1} \frac{s}{2}\right]_{0}^{c}\\ &=\lim _{b \rightarrow 0^{+}}(2-\sqrt{b})+\lim _{c \rightarrow 2^{-}}\left(\sin ^{-1} \frac{c}{2}-\sin ^{-1} 0\right)\\ &=(2-0)+\left(\frac{\pi}{2}-0\right)\\ &=\frac{4+\pi}{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.