Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.6 - Integral Tables and Computer Algebra Systems - Exercises 8.6 - Page 481: 4



Work Step by Step

By using Formula 22, we get: $\int x(ax+b)^ndx=\dfrac{(ax+b)^{n+1}}{a^2} \space [\dfrac{ax+b}{n+2}-\dfrac{b}{n+1}]+ \space C$ Let $I=\int\dfrac{x \space dx}{(2x+3)^{3/2}}=\int x(2x+3)^{-3/2}dx =\dfrac{(2x+3)^{-1/2}}{2^2} [\dfrac{2x+3}{\dfrac{1}{2}}-\dfrac{3}{-\dfrac{1}{2}}]+C \\=\dfrac{1}{4\sqrt{2x+3}} [4x+6+6 ]+C \\=\dfrac{x+3}{\sqrt{2x+3}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.