Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.6 - Integral Tables and Computer Algebra Systems - Exercises 8.6 - Page 481: 10

Answer

$\sqrt{x-x^2}+\dfrac{1}{2}\sin^{-1} (2x-1 )+C$

Work Step by Step

Apply formula : $\int \frac{\sqrt{2ax-x^2}}{x}dx=\sqrt{2ax-x^2}+a\sin^{-1} (\dfrac{x-a}{a})+C$ Consider $I=\int\dfrac{\sqrt{x-x^2}}{x}dx =\sqrt{x-x^2}+\dfrac{1}{2}\sin^{-1} (\dfrac{x-(1/2)}{\dfrac{1}{2}})+C \\=\sqrt{x-x^2}+\dfrac{1}{2}\sin^{-1} (2x-1 )+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.